ACTA SOCIETATIS MATHEMATICAE LATVIENSIS Abstracts of the $10^{\rm th}$ Latvian Mathematical Conference and $2^{\rm nd}$ International Conference on High Performance Computing and Mathematical Modelling, April 10-12, 2014, Liepāja, Latvia © 2014 LMB

MINIMAL PHYSICAL MODEL FOR INTERACTION OF MHD INSTABILITY WITH PLASMA¹

OLGERTS DUMBRAJS 1 and ANDREJS REINFELDS 2,3

¹Institute of Solid State Physics, University of Latvia

Ķengaraga iela 8, Rīga LV-1063, Latvia

²Faculty of Physics and Mathematics, University of Latvia

Zellu iela 8, Rīga LV-1002, Latvia

³Institute of Mathematics and Computer Science, University of Latvia

Raiņa bulvāris 29, Rīga LV-1459, Latvia

E-mail: olgerts.dumbajs@lu.lv, reinf@latnet.lv

Larger scale plasma instabilities not leading to an immediate termination of a discharge often result in periodic nonlinear perturbations of the plasma. A minimal possible physical model has been formulated [1] for description of the system with drive and relaxation processes which have very different time scales. The model is based on two equations: the first being responsible for the relaxation dynamics (MHD force balance) and the second for the drive (energy conservation). For a convenient mathematical analysis this model can be represented as an autonomous system of three parameter-dependent first order ordinary differential equations

$$\begin{cases} \dot{x} &= (z-1)y - \delta x, \\ \dot{y} &= x, \\ \dot{z} &= \eta(h-z-y^2z) \end{cases}$$
 (1)

where $\delta, \eta, h > 0$.

In this talk we analyze the local and global stability of the system in the neighbourhood of fixed points for different values of the parameters δ, η, h .

REFERENCES

 D. Constantinescu, O. Dumbrajs, V. Igochine, K. Lackner, R. Meyer-Spasche, H. Zohm and ASDEX Upgrade Team. A low-dimensional model system for quasi-periodic plasma perturbations. *Physics of Plasmas*, 18 (6), Article Number 062307, 2011. http://dx.doi.org/10.1063/1.3600209

¹This work was partially supported by the grant 345/2012 of the Latvian Council of Science